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Forty-four children between 6;0 and 7;11 took part in a study of derived fact strategy
use. They were assigned to addition and subtraction levels on the basis of calculation
pretests. They were then given Dowker’s (1998) test of derived fact strategies in addition,
involving strategies based on the Identity, Commutativity, Addend +1, Addend −1, and
addition/subtraction Inverse principles; and test of derived fact strategies in subtraction,
involving strategies based on the Identity, Minuend +1, Minuend −1, Subtrahend +1,
Subtrahend −1, Complement and addition/subtraction Inverse principles. The exact
arithmetic problems given varied according to the child’s previously assessed calculation
level and were selected to be just a little too difficult for the child to solve unaided. Children
were given the answer to a problem and then asked to solve another problem that could
be solved quickly by using this answer, together with the principle being assessed. The
children also took the WISC Arithmetic subtest. Strategies differed greatly in difficulty, with
Identity being the easiest, and the Inverse and Complement principles being most difficult.
The Subtrahend +1 and Subtrahend −1 problems often elicited incorrect strategies based
on an overextension of the principles of addition to subtraction. It was concluded that
children may have difficulty with understanding and applying the relationships between
addition and subtraction. Derived fact strategy use was significantly related to both
calculation level and to WISC Arithmetic scaled score.
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INTRODUCTION
There have been a number of studies of children’s use of derived
fact strategies in addition and subtraction (Baroody et al., 1983;
Russell and Ginsburg, 1984; Beishuizen et al., 1997; Carpenter
et al., 1997; Dowker, 1998, 2009; Blote et al., 2000; Star and Rittle-
Johnson, 2008; Jordan et al., 2009; Torbeyns et al., 2009; Cowan
et al., 2011). Certain derived-fact strategies appear very early
(Baroody and Gannon, 1984; Carpenter and Moser, 1984; Siegler
and Jenkins, 1989; Cowan and Renton, 1996). One of the earli-
est is the “counting-on-from-larger” concrete addition strategy,
whereby the child adds two numbers (e.g., 2 + 6), by representing
the larger number (e.g., with fingers) first, and then “counting-
on” the smaller number: “6, 7, 8–it’s 8!” This involves implicit
use (with or without an explicit knowledge) of the commutativ-
ity principle (Baroody and Gannon, 1984; Cowan and Renton,
1996). By contrast, there are many sophisticated strategies involv-
ing the use of decomposition and decomposition for multi-digit
arithmetic that appear late and appear to characterize unusually
skilled mental calculators (Hope and Sherrill, 1987).

There has been rather less research on children’s subtrac-
tion strategies than on their addition strategies. The use of
derived fact strategies might seem even more important with
regard to subtraction than addition, since children are gener-
ally less able to retrieve subtraction facts than addition facts
(Barouillet et al., 2008), so could benefit more from alterna-
tive strategies. Yet it may be more difficult for children to use

derived fact strategies for subtraction than addition, both because
their relative lack of known facts gives them less of a base from
which to use them, and because some derived fact strategies
for subtraction, such as the “subtraction by addition” strategy
(DeSmedt et al., 2010; Peters et al., 2013) depend on some
understanding of the inverse relationship between addition and
subtraction, which some studies suggest is difficult for children
(see below).

Most studies of derived fact strategies have not adjusted the
difficulty of the arithmetic problems to the child’s arithmetical
level, thereby risking on the one hand that some children may find
it easier to calculate or retrieve a solution directly than to derive it
on the basis of a principle, and on the other hand that they may
find the problems so difficult that they refuse to attempt them at
all, or make wild guesses. The present study aimed to adapt the
problems given to individual children to their previously assessed
calculation ability, and to present them with problems just a lit-
tle too difficult for them to solve unaided. More generally, most
studies have not looked at the relationship between derived fact
strategy use and arithmetical ability, but have focused more on
chronological age differences. The present study looks at rela-
tionships between the use of derived fact strategies and both
calculation performance level and performance on a standard-
ized arithmetic test emphasizing reasoning. Previous work by this
author (Dowker, 1998, 2005, 2009) has focused on individual dif-
ferences in general readiness to use derived fact strategies (i.e., the
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Dowker Young children’s derived fact strategies

total number of such strategies used in a task), whereas this study
focuses more on the use of particular strategies.

Thus, the present study investigated 6- and 7–year-olds’ ability
to use derived fact strategies, based on a range of principles, for
both addition and subtraction. The principles were selected for
their applicability across a fairly wide range of difficulty. Some
derived fact strategies, such as most counting-based strategies or
those based on the use of doubles, are mainly applicable to single-
digit arithmetic (Carpenter and Moser, 1984; Baroody, 1987);
others, including certain decomposition strategies (Beentjes and
Jonker, 1987; Beishuizen, 1993; Beishuizen et al., 1997; Carpenter
et al., 1997; Fuson et al., 1997) are mainly applicable to multi-digit
arithmetic. Important as these strategies are, the present study
restricted the strategies under consideration to those that may be
used for both single-and multi-digit arithmetic

The Identity principle, which is here investigated for both addi-
tion and subtraction, is the most basic of arithmetical principles:
that if an arithmetical operation produces a given result, then
the repetition of the same arithmetical principle will produce the
same result. Its use in predicting the result of an arithmetical
operation is properly speaking not a “derived-fact strategy” but
a “same-fact” strategy. Thus, its inclusion in the study is intended
to investigate whether children tend to use the result of one oper-
ation to predict the result of another at all, over and above the
particular principles that they are able to use in such predictions.
This principle has received relatively little attention, but would
appear to be a cornerstone of the ability to use derived fact strate-
gies. It was predicted that while the majority of children would
use this strategy, a significant number would not.

The Commutativity principle is a crucial addition principle,
and one which appears to be used with some frequency by pri-
mary school children (Baroody et al., 1983; Russell and Ginsburg,
1984; Canobi et al., 1998; Dowker, 1998, 2009; Canobi, 2005).
Strategies based on commutativity only hold for addition and
therefore are only investigated for that operation.

Simple associativity-based strategies, involving the addition
and subtraction of 1, are also investigated. The N + 1 principle for
addition is the simplest of the assumptions that result from the
broader associativity principle. This is the principle that if one of
the addends is increased by 1, then the sum will also be increased
by 1. Other related principles, also to be investigated here, include:

The N − 1 principle for addition: that if one of the addends is
decreased by 1, then the sum will also be decreased by 1.
The Minuend + 1 principle for subtraction: that if the minuend
is increased by 1, then the remainder will also be increased by 1.
The Minuend −1 principle for subtraction: that if the minuend
is decreased by 1, then the remainder will also be decreased by 1.
The Subtrahend +1 principle for subtraction: that if the subtra-
hend is increased by 1, then the remainder will be decreased by 1.
The Subtrahend −1 principle for subtraction: that if the subtra-
hend is decreased by 1, then the remainder will be increased by 1.

Finally, this study investigates strategies based on the inverse rela-
tionship between addition and subtraction. Most studies (Bisanz
and LeFevre, 1990; Demby, 1993) suggest that strategies based
on the addition/subtraction Inverse principle (a + b − b = a;
if a + b = c, then c − b = a) are among the later-developing

derived-fact strategies, and are not typically used until the age of
about 10. However, Baroody et al. (1983) found that many 7-and
8-year-olds used this strategy, and that it typically preceded the
N + 1 strategy. Gilmore and Bryant (2006, 2008) and Robinson
and Dubé (2009, 2013) found considerable individual differences
in elementary school children’s use of this strategy, but some 6-to
9-year-olds pupils used it effectively. A strategy logically related
to inversion strategies is the Complement principle: if a − b = c,
then a − c = b. This has not been much investigated, at least with
regard to children in this age range, and will be considered here. It
was predicted that neither the addition/subtraction Inverse prin-
ciple nor the complement principle would be used by a majority
of children.

METHODS
PARTICIPANTS
144 children ranging from 6;0 to 7;11 were tested individu-
ally. They came from two state primary schools in Oxford. 79
were boys and 65 were girls. Their mean age was 81.95 months
(SD = 6.23).

PROCEDURE
Use of principles task
The task was Dowker’s (1998, 2009) test of use of arithmetical
principles in derived fact strategies. It included tests of strategy
use in both addition and subtraction.

Addition principles task
In order to evaluate the children’s competence in addition calcu-
lations, each child was given the mental addition test previously
devised to assess children’s arithmetical performance prior to
an estimation task (Dowker, 1997). It consisted of a list of 20
addition sums graduated in difficulty from 4 + 5, 7 + 1, etc., to
235 + 349. These sums were simultaneously presented orally and
visually in a horizontal format. The children’s answers were oral.

The sums were as follows:

(1) 6 + 3 (11) 31 + 57
(2) 4 + 5 (12) 68 + 21
(3) 8 + 2 (13) 52 + 39
(4) 7 + 1 (14) 45 + 28
(5) 4 + 9 (15) 33 + 49
(6) 7 + 5 (16) 26 + 67
(7) 8 + 6 (17) 235 + 142
(8) 9 + 8 (18) 613 + 324
(9) 26 + 72 (19) 523 + 168

(10) 23 + 44 (20) 349 + 234

Testing continued with each child until (s) he had failed to give a
correct response to six successive items.

The children were then divided into five levels according to
their performance on the mental calculation task. The levels were:
Beginning Arithmetic (unable to deal reliably with single-digit
addition); Facts to 10 (passed items 1–4 but failed at least 2 of
the next 4 items); Facts to 25 (passed items 1–8, but failed at least
2 of the next 4 items); 2-Digit Addition- No Carrying (passed
items 1–12, but failed at least 2 of the next 4 items); and 2-Digit
Addition –Carrying (passed items 1–16, but failed at least 2 of the
final 4 items). Table 1 in the Results section gives the numbers of
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Table 1 | Addition strategies used at different levels.

Level Beginning Facts to Facts to 2-Digit 2-Digit Total

arithmetic 10 25 (Carrying) (No carrying)

Problem within
range

2 + 2 5 + 3 8 + 6 23 + 44 52 + 39

Problem just
outside range

5 + 3 8 + 6 23 + 44 52 + 39 523 + 168

n 11 34 63 16 20 144

Mean age in
months

79.88 (6.63) 80.98 (6.5) 82.04 (6.3) 83.54 (3.82) 84.65 (5.98) 81.95 (6.23)

Mean
arithmetic
scaled score

3.86 (1.07) 8.89 (2.31) 10.62 (3.09) 10.7 (3.68) 12.19 (4.12) 9.97 (3.59) χ2 p

Identity 22% 56% 80% 88% 95% 73% 25.66 0.000**

Commutativity 9% 38% 65% 82% 70% 57% 28.00 0.000**

Addend +1 0% 24% 51% 71% 75% 56% 28.04** 0.000**

Addend −1 0% 18% 40% 59% 65% 37% 22.06 0.000**

Inverse 0% 18% 6% 35% 25% 14% 9.59 0.031*

*p < 0.05; **p < 0.01.

children at each level, and examples of items that would be within
and just outside of their range.

They were then given an arithmetical reasoning test involving
use of arithmetical principles in derived fact strategies. The tech-
nique was used of giving children the answer to a problem and
then asking them to solve another problem that could be solved
quickly by using this answer, together with the principle under
consideration. Problems preceded by answers to numerically
unrelated problems were given as controls. The exact arithmetic
problems given varied according to the child’s previously assessed
calculation level of the child, and were selected to be just a little
too difficult for the child to solve unaided. Such a set of prob-
lems is here termed, as in earlier studies (Dowker, 1998, 2009),
the child’s base corresponding set).

Each child was shown the addition problems, while the exper-
imenter simultaneously read them to him/her. Children were
asked to respond orally. The children received three addition
problems per principle. The questions about the principles were
grouped around the addition problems, so that the children
received 6 questions (involving 5 principles and a control ques-
tion) for one addition problem; then 6 questions for the sec-
ond addition problem; then 6 questions for the third addition
problem.

The principles investigated were as follows:

(1) The Identity principle (e.g., if one is told that 8 + 6 = 14,
then one can automatically give the answer “14,” without
calculating, if asked “What is 8 + 6?”).

(2) The Commutativity principle (e.g., if 9 + 4 = 13, 4 + 9 must
also be 13).

(3) The N ± 1 principle (e.g., if 23 + 44 = 67, 23 + 45 must be
68).

(4) The N − 1 principle (e.g., if 9 + 8 = 17, 9 + 7 must be
17 − 1 or 16).

(5) The addition/subtraction Inverse principle (e.g., if 46 + 27 =
73, then 73 − 27 must be 46).

For one of the addition problems in each set, the order of
presentation of principles was:

Commutativity, Identity, N + 1, N − 1, Control, Inverse.
For a second problem in each set, the order was:
Inverse, N + 1, N − 1, Commutativity, Identity, Control.
For the third problem in each set, the order was:
Control, Inverse, N − 1, Identity, Commutativity, N + 1.
The order of presentation of the addition problems was varied
systematically.
Children were allowed 30 s to begin answering a question; if they
did not give an answer within that time, the researcher moved on
to the next question.

A child was deemed to be able to use a principle if (s) he could
explain it and/or used it to derive at least 2 out of 3 unknown
arithmetical facts, while being unable to calculate any sums of
similar difficulty when there was no opportunity to use the
principle.

Subtraction principles test
The subtraction principles part of the Use of Principles Task was
also preceded by a calculation pretest, which consisted of a list of
20 subtraction problems, as follows:

(1) 6 − 2 (11) 68 − 42
(2) 8 − 4 (12) 86 − 44
(3) 10 − 3 (13) 62 − 14
(4) 9 − 5 (14) 43 − 17
(5) 15 − 7 (15) 75 − 38
(6) 13 − 6 (16) 84 − 59
(7) 12 − 4 (17) 326 − 125
(8) 15 − 7 (18) 894 + 513
(9) 37 − 23 (19) 681 − 214

(10) 55 − 32 (20) 572 − 348

Frontiers in Human Neuroscience www.frontiersin.org January 2014 | Volume 7 | Article 924 | 3

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Dowker Young children’s derived fact strategies

The children were then divided into four levels according to their
performance on the mental calculation task. The levels were:
Beginning Arithmetic (unable to deal reliably with single-digit
subtraction); Facts to 10 (passed items 1–4 but failed at least 2
of the next 4 items); Facts to 25 (passed items 1–8, but failed at
least 2 of the next 4 items); and 2-Digit Subtraction (passed items
1–12, but failed at least 2 of items 13–16 and/or of items 17–20).
Originally, the 2-Digit Subtraction group was divided into two
groups, as with addition: 2-Digit-No Borrowing, and 2-Digit-
Borrowing. However, as only 8 children would have met criteria
for the 2-Digit-Borrowing group, they were grouped together, for
the purposes of the present study, with those who could only carry
out 2-digit subtraction when borrowing was not involved. Table 3
in the Results section gives the numbers of children at each level,
and examples of items that would be within and just outside of
their range.

The questions about the principles were grouped around the
subtraction problems, so that the children received 8 questions
(involving 7 principles and a control question) for one addition
problem; then 8 questions for the second addition problem; then
8 questions for the third addition problem

The principles investigated for subtraction were as follows, in
order of their difficulty for the children:

(1) The Identity principle (e.g., if one is told that 12 − 5 = 7,
then one can automatically give the answer “7,” without
calculating, if asked “What is 12 − 5?”).

(2) The Minuend ±1 principle (e.g., if 67 − 45 = 22, 68 − 45
must be 23).

(3) The Minuend −1 principle (e.g., if 572 − 348 = 224,
571 − 348 must be 223).

(4) The Subtrahend ±1 principle (e.g., if 9 − 6 = 3, 9 − 7 must
be 2).

(5) The Subtrahend −1 principle (e.g., if 37 − 23 = 14, 37 − 22
must be 15).

(6) The addition/subtraction Inverse principle (e.g., if
681 − 214 = 467, then 214 + 467 must be 681.

(7) The Complement principle (e.g., if 11 − 3 = 8, 11 − 8 must
be 3).

For one of the subtraction problems in each set, the order of
presentation of principles was:

Complement, Minuend + 1, Subtrahend + 1, Inverse,
Minuend −1, Subtrahend −1, Identity, Control.
For a second problem in each set, the order was:
Minuend−1, Subtrahend +1, Minuend +1, Inverse, Identity,
Minuend −1, Control, Complement.
For the third problem in each set, the order was:
Control, Identity, Subtrahend +1, Minuend +1,
Subtrahend −1, Complement, Minuend −1, Inverse.
The order of presentation of the subtraction problems was
randomly varied.
Children were allowed 30 s to begin answering a question; if they
did not give an answer within that time, the researcher moved on
to the next question.

The order of presentation of addition and subtraction was
randomly varied.
In addition, the children were given the Arithmetic subtest of
the Wechsler Intelligence Scale for Children or WISC (Wechsler,
1991).

RESULTS
As no children calculated the answers to the control questions
within the time given, responses to control questions will not be
analyzed here.

RESULTS FOR ADDITION
Table 1 gives the percentage of responses at each level using each
principle in derived fact strategies for addition.

Chi-square tests were carried out to investigate whether there
were significant differences between the different levels as regards
the frequency of each strategy. The chi-square value and p value
are given in the final two columns of Table 1. In all the chi-square
comparisons, there were 4◦ of freedom.

Post-hoc tests were then carried out to investigate which group
differences were causing the significant effects. For the Identity
principle and the Addend −1 principle, the significant differences
were between Beginning Arithmetic and each of the other levels
except for the Facts to 10 level; and between the Facts to 10 level
and the 2-Digit (Carrying) level. For the Commutativity prin-
ciple and the Addend +1 principle, the significant differences
were between Beginning Arithmetic and each of the other lev-
els except for the Facts to 10 levels; and between the Facts to 10
level and both the 2-Digit (No Carrying) the 2-Digit (Carrying)
levels. For the Inverse principle, there was a borderline signifi-
cant difference between the Beginning Arithmetic and the 2-Digit
(No Carrying) level, and no other group differences reached
significance.

Entry method nominal logistic regressions were carried out
with each principle (Used or Did Not Use) as the dependent vari-
able. The covariates were Age in months and WISC Arithmetic
(Scaled Score). The chi-square and p-values for these regressions
are given in Table 2.

RESULTS FOR SUBTRACTION
Table 3 gives the percentage of responses at each level using each
principle in derived fact strategies for subtraction. With regard
to the Subtrahend +1 and Subtrahend −1 strategies, two per-
centages are given. The first percentage given is that for use of
a common but incorrect strategy: that of assuming that if a − b =
c, then a − (b + 1) = c + 1 (instead of c − 1), or that if a −
b = c, then a − (b − 1) = c − 1 (instead of c + 1). The second
percentage is for the use of the correct strategy.

Chi-square tests were carried out to investigate whether there
were significant differences between the different levels as regards
the frequency of each strategy. The chi-square value and p value
are given in the final two columns of Table 3. In the case of the
Minuend +1 and Minuend −1 strategies, two comparisons were
made: one taking only the correct strategy into account; and one
combining use of the correct strategy and the common incor-
rect strategy. In all the chi-square comparisons, there were 3◦ of
freedom.
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Table 2 | Results of nominal logistic regressions on the use of addition strategies with age and arithmetic scaled score as covariates.

Principle used Age in months: χ2 Age in months: p Arithmetic scaled score: χ2 Arithmetic: scaled score: p

Identity 4.505 0.034* 4.92 0.034*

Commutativity 4.66 0.031* 3.885 0.049*

Addend +1 2.73 0.099 8.045 0.005**

Addend −1 3.32 0.069 7.64 0.006**

Inverse 1.43 0.232 0.027 0.87

*p < 0.05; **p < 0.01.

In all chi-square comparisons, df = 1.

Table 3 | Subtraction strategies used at different levels.

Level Beginning Facts to Facts to 2-Digit Total

arithmetic 10 25 subtraction

Problem within range ? 6–3 12–5 58–34
Problem just outside range 6–3 12–5 58–34 82–26
n 18 56 48 22 144
Mean age in months 79.88 (6.63) 80.98 (6.5) 82.87 (5.84) 85.63 (4.59) 81.95 (6.23)
Mean arithmetic scaled
score

4.82 (1.94) 9.39 (2.58) 11.4 (3.33) 12.31 (3.61) 9.97 (3.59) χ2 p

Identity 17% 61% 77% 86% 65% 29.49 0.000**
Minuend +1 0% 23% 54% 71% 38% 35.26 0.000**
Minuend −1 0% 21% 50% 71% 56% 9.42 0.022*
Subtrahend +1 0% + 6% 20% + 4% 60% + 4% 55% + 22% 38% + 6% 1.92a 9.66b 0.775a 0.02*b

Subtrahend -1 0% + 6% 20% + 2% 54% + 6% 43% + 29% 33% + 7% 2.45a 11.23b 0.57a 0.009**b

Complement 0% 18% 6% 35% 14% 9.43 0.022*
Inverse 0% 7% 17% 27% 12% 8.56 0.026*

*p < 0.05 **p < 0.01
aAnalysis for correct strategy only.
bAnalysis for combination of correct strategy with common incorrect strategy.

Post-hoc tests were then carried out to investigate which group
differences were causing the significant effects. For the Identity
principle, the significant differences were between Beginning
Arithmetic and each of the other levels. For the Subtrahend +1
principle and the Subtrahend −1 principle, the significant differ-
ences were between Beginning Arithmetic and each of the other
levels; and between the Facts to 10 level and each of the other
levels. Two different post-hoc analyses were carried out for the
Subtrahend +1 and Subtrahend −1 principles: for the correct
strategy alone, and for the correct strategy combined with the
common incorrect strategy. For the correct strategy alone, no
group differences were significant for these principles. For the
combination of the correct and the common incorrect strategy,
the significant differences, in the case of both the principles, were
between the 2-Digit Subtraction level and every other level. For
the Complement principle and the Inverse principle, there were
significant differences between the Beginning Arithmetic and the
2-Digit Subtraction level, and no other group differences reached
significance.

Entry method nominal logistic regressions were carried out
with each principle as the dependent variable. The dependent
variable was binary (Used vs. Did Not Use). In the case of the
Minuend +1 and Minuend −1 principles, two different analyses
were done: (a) for Correct Strategy Use alone and (b) for Correct

Strategy Use combined with Common Incorrect Strategy Use.
The covariates were Age in months and WISC Arithmetic (Scaled
Score). The chi-square and p-values for these regressions are given
in Table 4.

CHILDREN’S JUSTIFICATION OF THEIR ANSWERS
Most (91%) of children classed as using the principles were able
to justify their answers.

Typical justifications included:

(Identity); “It’s the same!”
(Commutativity): “Those numbers are just the same, but the
other way round.”
(N + 1 principle for addition; Minuend +1 principle for sub-
traction): “It’s just one more.”
(N − 1 principle for subtraction; Minuend −1 principle for
subtraction): “It’s just one less.”
(Subtrahend +1 principle for subtraction): (Usually, incor-
rectly): “It’s just one more.” (Correctly): “That’s one more, so
the answer has to be one less.”
(Subtrahend −1 principle for subtraction): (Usually, incor-
rectly): “It’s just one less.” (Correctly): “That’s one less, so the
answer has to be one more.”
(× 10) principle: “You just add on a 0.”
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Table 4 | Results of nominal logistic regression on use of subtraction strategies with age and arithmetic scaled score as covariates.

Age in months:χ2 Age in months: p Arithmetic scaled score: χ2 Arithmetic: scaled score: p

Identity 4.86 0.041* 6.84 0.009**

Minuend +1 8.265 0.004** 14.77 0.000**

Minuend −1 3.3 0.068 10.9 0.001**

Subtrahend +1 1.86a; 3.3b 0.24a; 0.07b 0.12a; 1.37b 0.73a; 0.24b

Subtrahend −1 4.42a; 4.43b 0.035*a; 0.035*b 0.57a; 0.7b 0.45a; 0.4b

Complement 4.915 0.027* 2.13 0.145
Inverse 0.88 0.348 5.45 0.02*

*p < 0.05; **p < 0.01.
aAnalysis for correct strategy only.
bAnalysis for combination of correct strategy with common incorrect strategy.

(Inverse principle): “Because that (a + b) = c, so c take away
that (a) must be (b).” (Of course the child used the actual
numbers rather than letters.)
(Complement principle): “If that (a) take away that (b) = c,
then that (a) take away that (c) must be b.”

DISCUSSION
This study shows that many 6- and 7-year-olds children can make
explicit use of derived fact strategies in addition and subtraction.
There is, however, a great deal of variation in the use of such
strategies in this age range, influenced by both by the particular
strategies involved, and by children’s calculation ability.

USE OF PARTICULAR STRATEGIES
The most basic principle, Identity, was used with by far the great-
est frequency; and is the only strategy that was used more than
once or twice at the Beginning Arithmetic level. It was still only
used by a minority of children at this level, however; and was
not used universally even at the higher levels. This was followed
by commutativity of addition, supporting other studies that sug-
gest that this principle is used earlier than most other arithmetical
principles (Baroody et al., 1983; Cowan and Renton, 1996; Canobi
et al., 1998, 2003).

The strategy of using commutativity is followed in frequency
by strategies that involve adding, or (to a lesser extent) subtract-
ing, 1 from a problem component and thereby to the result.

Strategies of the latter type could be, and often were, used
incorrectly as well as correctly. When used for addition, they
tended to be used correctly; but this was not the case for subtrac-
tion, where the Subtrahend +1 and Subtrahend −1 problems were
more likely to lead to incorrect than correct strategy use. Children
are more likely, if told that a − b = c, to deduce that a − (b + 1) =
c + 1, than correctly that a − (b + 1) = c − 1. In other words,
when using this class of strategies, they often fail to make appro-
priate use of compensation. This may in part reflect procedural
difficulties, perhaps relating to working memory limitations.
However, when considered in conjunction with the children’s
common failure to use the addition-subtraction inverse principle
for addition or subtraction, or the complement principle for sub-
traction, it probably also reflects a difficulty in understanding the
relationships between addition and subtraction. The arithmeti-
cal relationships most accessible to children appear to be those
appropriate to addition, and these are sometimes inappropriately

extended to subtraction. It may be that the same is true of rela-
tionships between addition and other arithmetical operations;
e.g., MacCuish (1986) found that 9- and 10-year-olds children
overextended certain addition principles to multiplication.

With regard to strategies involving use of the inverse rela-
tionship between addition and subtraction, results of the present
study are far more consistent with those of Bisanz and LeFevre
(1990) than with those of Baroody et al. (1983), in that strategies
of this nature were used very infrequently. The logically related
complement strategy for subtraction was used even more rarely.

This is particularly striking, since these children were being
taught mathematics according to the National Numeracy Strategy
(DfEE, 1999), which explicitly recommended teaching children
to understand the inverse relationship between addition and
subtraction from the second year of primary school onwards.
Nevertheless, the principle was only used by about one in ten
children, similar to findings for a sample studied before the
explicit introduction of this concept into the English school cur-
riculum (Dowker, 1998). This suggests that children, at least
under the age of 8, do not readily make use of this principle in
arithmetic.

However, this may not be the case for all arithmetical tasks.
Gilmore and Bryant (2006, 2008) found that 6-to 9-year-olds chil-
dren did often make use of derived fact strategies involving inverse
relationships between addition and subtraction. They performed
better and more accurately on such problems as “15 + 12 −
12 = �” than on control problems such 11 + 11 − 7 = �.” An
explanation for the discrepancy in results might be that children
are better at noticing and making use of relationships between
addition and subtraction within an arithmetic problem than
between two arithmetic problems. If there is an addition and a
subtraction within the same problem it is perhaps harder to treat
them as unrelated—“one’s adding and one’s taking away”—than
if the task involves perceiving and using a relationship between
an addition problem and a subtraction problem. This provides
further evidence that the ability to use derived fact strategies is
not “all or nothing” and may be highly dependent on context and
mode of presentation of a task.

DO SUCCESS AND FAILURE IN THE DERIVED FACT STRATEGY TEST
ALWAYS REFLECT USE OF PRINCIPLES?
So far in this paper, “use of principles” and “use of derived
fact strategies” have been discussed almost as though they were
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synonymous; but of course the relationship between the two
is likely to be far more complex. With all of the arithmetical
principles discussed here, there are two separate issues: whether
a child understands an arithmetical concept or principle, and
whether they use this principle appropriately in an arithmetical
strategy. Some principles may not be used in derived fact strate-
gies because the children have no access to the principles. On the
other hand, children may understand an arithmetical principle or
relationship, but not apply it appropriately.

The present study involved explicit use of derived fact strate-
gies in a task involving arithmetic problems presented in symbolic
format, and not embedded in a practical or social context. Some
studies have suggested that children may be more likely to use
derived fact strategies when problems are presented in concrete
form (Bryant et al., 1999) or if the task requires only implicit
rather than explicit use of the principle (Siegler and Stern, 1998).
Canobi et al. (1998) studied 6-to 8-year-olds’ use of derived fact
strategies based on commutativity and associativity, and their
evaluations of puppets using these strategies. They were consid-
erably better at judging and justifying the appropriateness of a
puppet’s use of such strategies than at using the strategies them-
selves. It is therefore likely that the present study gives a somewhat
conservative estimate of the extent of derived fact strategy use in
young children.

However, studies also suggest that elicited use of derived
fact strategies is not the most difficult task. Children and even
adults tend to be better at using derived fact strategies appropri-
ately when these are instructed or directly elicited, than at using
them spontaneously, though there is a strong correlation between
elicited and spontaneous use of such strategies (Gaschler et al.,
2013).

A review by Prather and Alibali (2009) indicates that context
and mode of assessment may have a significant impact on whether
children use such strategies. Moreover, it is possible that children
may sometimes have failed to use a strategy because of a coin-
cidental procedural error or momentary distraction, rather than
because of a failure to understand the principle. The fact that the
criterion for success on a principle was use of the relevant strategy
for two out of three arithmetic problems (rather than all three)
reduces this risk, but does not eliminate it completely.

The question also arises of whether the reverse may have hap-
pened at times: could children have responded correctly to some
items because they calculated from scratch and did so accurately,
rather than because they used the principle? However, while this
possibility can never be totally ruled out, it is unlikely to have
occurred in most cases because (1) the sets of problems given
to individual children were selected on the basis of the pretest
indicating that they would be too difficult for them to calculate
mentally; (2) they were not able to calculate the control problems
mentally; (3) in the vast majority of cases, they were able to justify
their correct answers.

RELATIONSHIPS BETWEEN DERIVED FACT STRATEGIES AND
ARITHMETICAL ABILITY
Although discrepancies can and do occur, in both directions,
between calculation performance level and extent of derived fact
strategy use (Dowker, 1998, 2009), the two are very strongly

associated (see Tables 1, 3). This was true despite the fact that the
difficulty of the arithmetic problems given was adjusted according
to the children’s calculation performance levels. Only a minor-
ity of children at the Beginning Arithmetic levels for addition
and subtraction used any derived fact strategies. The use of such
strategies became more frequent at the Facts to 10 levels, and
increased sharply as children reached the Facts to 25 level and
beyond. This increase with calculation performance level was
found for both addition and subtraction; and was significant for
all strategies except for the Complement principle for subtraction,
perhaps due to floor effects for this principle.

Scaled score on an arithmetical reasoning task was also a strong
predictor of most strategies, showing a significant relationship to
use of all strategies except some of the more difficult ones: the
Inverse principle in the addition task; and the Subtrahend +1,
Subtrahend −1 and Complement principles in the Subtraction
task. Thus, the use of most derived fact strategies is closely related
to arithmetical ability. The relationship to chronological age is less
strong, but is present for Identity and Commutativity in addition
and for Identity, Minuend +1 and Subtrahend −1 in subtraction.
These children were all within a relatively limited age range (6;0
to 7;11) and age might be found to have a stronger influence in a
group with a wider age range.

The relationships that were found between derived fact strat-
egy use and both calculation performance levels and WISC
Arithmetic could indicate that a certain level of arithmeti-
cal knowledge is a prerequisite for the use of such strategies.
Alternatively, the derived fact strategies may develop first, and
contribute to an improvement in calculation performance.

As pointed out by Dowker (2009), these alternative possibili-
ties have some parallels with the “some principles first” and “skills
first” theories of the relationship between counting principles and
procedures. Findings (Dowker, 2008) with regard to the existence
of both a strong correlation and the existence of discrepancies
in both directions in individual children suggest some degree
of “mutual development” or iterative relationship between the
two (Baroody and Ginsburg, 1986; Cowan et al., 1996). Rittle-
Johnson et al. (2001) have suggested that this extends to the
iterative development of principles and skills in the later devel-
opment of arithmetic. This would be consistent with the results
of this study, showing a strong relationship between derived fact
strategy use and arithmetical ability as measured both by addition
and subtraction performance levels and by the WISC Arithmetic
test, but at the same time, showing discrepant performance (e.g.,
Tables 1, 3 show that some children at the Facts to 10 level used
the addition/subtraction inverse strategy, and some at the higher
levels failed to use Identity—though the latter was rare, and might
possibly be explainable on the basis of momentary distraction or
procedural error).

Dowker (2009) found the relationships between derived fact
strategy use and performance on standardized arithmetic tests to
be less strong in children with mathematical difficulties than in
other children, which may indicate that the iterative integrative
process occurs less effectively in this group than among typically
achieving children.

Further research is needed to investigate the extent to which
both age and level of mathematical achievement may influence
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the relationships between calculation and derived fact strategy
use. Certainly, the evidence suggests that there are children, both
among low and typical achievers in mathematics, whose derived
fact strategy use is considerably better than would be expected
from their calculation ability (Dowker, 1998; Gilmore and Bryant,
2006, 2008). Further studies of the characteristics of such children
might give us a greater understanding of the levels of functional
independence and interdependence between derived fact strategy
use and other arithmetical abilities.

OTHER AREAS FOR FURTHER RESEARCH
Much more research, and in particular longitudinal research, is
needed if we are to fully understand the nature, foundations and
development of derived fact strategies. This must involve research
into the order in which such strategies develop, and whether
any particular strategies are prerequisites for any other strate-
gies. It must also involve studying the nature and direction of
predictive relationships between derived fact strategies, calcula-
tion performance, and arithmetical concepts; and, in particular,
whether derived fact strategies are more dependent on principled
knowledge or the ability to implement strategies in arithmetic.
Intervention studies would be crucial here: would training in
derived fact strategies lead to improvement in calculation, and/or
vice versa?

With regard to this issue, it is also important to investigate the
effects of context and task presentation mode on performance.
Research should also go beyond arithmetic in examining whether
any domain-general abilities have a specific role to play in the
development and use of derived fact strategies.

Moreover, it would be desirable to investigate the neural
mechanisms involved in understanding and using derived fact
strategies. Studies of patients have indicated that double disso-
ciations can occur between retrieval and derived fact strategy use
(Warrington, 1982; Delazer, 2003). Now that it is increasingly fea-
sible to carry out brain imaging studies with children, researchers
should investigate whether the network of brain areas involved
in the use of derived fact strategies differs in any way from that
involved in other aspects of arithmetic, and whether this changes
with development.
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